

gitmatch — Gitignore-style path matching

GitHub [https://github.com/jwodder/gitmatch]
| PyPI [https://pypi.org/project/gitmatch/]
| Documentation [https://gitmatch.readthedocs.io]
| Issues [https://github.com/jwodder/gitmatch/issues]

gitmatch provides gitignore-style pattern matching of file paths.
Simply pass in a sequence of gitignore patterns and you’ll get back an
object for testing whether a given relative path matches the patterns.

Installation

gitmatch requires Python 3.7 or higher. Just use pip [https://pip.pypa.io] for Python 3 (You have pip, right?) to install it:

python3 -m pip install gitmatch

Examples

Basic usage:

>>> import gitmatch
>>> gi = gitmatch.compile(["foo", "!bar", "*.dir/"])
>>> bool(gi.match("foo"))
True
>>> bool(gi.match("bar"))
False
>>> bool(gi.match("quux"))
False
>>> bool(gi.match("foo/quux"))
True
>>> bool(gi.match("foo/bar"))
True
>>> bool(gi.match("bar/foo"))
True
>>> bool(gi.match("bar/quux"))
False
>>> bool(gi.match("foo.dir"))
False
>>> bool(gi.match("foo.dir/"))
True

See what pattern was matched:

>>> m1 = gi.match("foo/bar")
>>> m1 is None
False
>>> bool(m1)
True
>>> m1.pattern
'foo'
>>> m1.path
'foo'
>>> m2 = gi.match("bar")
>>> m2 is None
False
>>> bool(m2)
False
>>> m2.pattern
'!bar'
>>> m2.pattern_obj.negative
True
>>> m3 = gi.match("quux")
>>> m3 is None
True

Indices and tables

	Index

	Search Page

Patterns

The pattern language used by gitmatch is intended to match that of Git’s
gitignore(5) [https://git-scm.com/docs/gitignore] as of v2.36.1, including the undocumented features (mainly
involving character classes) present in Git’s code.

Specifically:

	A pattern that starts with a # or is empty (after stripping trailing
whitespace, a trailing /, and an initial !) is discarded

	Trailing space and tab characters in a pattern are stripped unless they are
escaped with a backslash (which must itself not be escaped by another
backslash)

	The forward slash (/) is used as the directory separator, even on Windows

	An initial ! negates the pattern; if a path matches a negated pattern,
then any matches against previous patterns in the pattern list will be
discarded.

	? matches any character other than /

	* matches zero or more of any character other than /

	A leading or medial / anchors the pattern to the start of the path; if no
such / is present, the pattern will match any path in which it is
preceded by zero or more /-separated path components, each one composed
of one or more non-/ characters

	A trailing / causes the pattern to only match directories

	An initial **/ matches zero or more /-separated path components

	A trailing /** matches one or more /-separated path components

	/**/ matches zero or more intervening /-separated path components;
e.g., foo/**/bar matches foo/bar, foo/gnusto/bar,
foo/gnusto/cleesh/bar, etc, but not fooxbar. Any following **/
(e.g., as in foo/**/**/**/bar) are redundant.

	A medial **/ matches zero or more of any character, including /

	** in any other context is the same as *

	[starts a character class, which must be terminated by]. A
character class will match any one character from the set of characters
specified within. Characters can be specified as either themselves (e.g.,
[abc] matches a, b, or c) and/or as ranges (e.g., [a-f]
matches any letter from a through f).

	A character class can be inverted (making it match any character except
those specified) by inserting ! or ^ after the opening [

	A] can be included in a character set by either escaping it or by
placing it immediately after the opening [and optional !/^.

	In order for a] to be used on the right side of a range, it must be
escaped with a backslash; otherwise, it indicates the end of the
character class, and the preceding hyphen and character before it will be
treated literally rather than as a range.

	Within a character class, an occurrence of [:PROPERTY:] will cause the
class to include the ASCII characters with the given property; supported
properties are:

	alnum — letters and numbers

	alpha — letters

	blank — space and tab character

	cntrl — any character with an ASCII value less than 0x20, plus the
DEL (0x7F) character

	digit — numbers

	graph — letters, numbers, and punctuation

	lower — lowercase letters

	print — letters, numbers, punctuation, and the space character

	punct — punctuation

	space — space character, tab, line feed, and carriage return

	upper — uppercase letters

	xdigit — hexadecimal digits

An unknown PROPERTY produces an invalid pattern that will not match
anything.

	A character class will never match a /

	Any character (special or not) in a pattern may be deprived of any special
meaning by preceding it with a backslash. A backslash that is not followed
by a character (after stripping a final /) produces an invalid pattern
that will not match anything.

	If a directory path matches a pattern list, then all files & directories
within that directory recursively will match as well, regardless of any
negative patterns that may apply to them

	Patterns cannot contain the NUL character

	A path containing a NUL character will never match any pattern

	A pattern will never match the current directory

Strings vs. Bytes

While it’s usual in Python to work with str [https://docs.python.org/3/library/stdtypes.html#str] values of Unicode characters, Git
instead operates on bytes. As a result, if a path or pattern contains
non-ASCII characters, you may get different results using str [https://docs.python.org/3/library/stdtypes.html#str]s with
gitmatch than you would with Git. For example, in Git, a file named
“tést” will not be matched by the gitignore pattern t?st, because the
é is encoded using more than one byte (assuming UTF-8), but if you pass
these strings to gitmatch, the path will match (assuming the é is in
composed form, which is a whole other can of worms). If you want Git’s
behavior exactly, pass bytes [https://docs.python.org/3/library/stdtypes.html#bytes] to gitmatch instead of str [https://docs.python.org/3/library/stdtypes.html#str] (ideally
encoded using os.fsencode() [https://docs.python.org/3/library/os.html#os.fsencode]).

Note that the patterns passed to a single call to gitmatch.compile() must be
either all str [https://docs.python.org/3/library/stdtypes.html#str] or all bytes [https://docs.python.org/3/library/stdtypes.html#bytes], and a Gitignore instance constructed from
str [https://docs.python.org/3/library/stdtypes.html#str] patterns can only match against str [https://docs.python.org/3/library/stdtypes.html#str] paths, while one constructed from
bytes [https://docs.python.org/3/library/stdtypes.html#bytes] patterns can only match against bytes [https://docs.python.org/3/library/stdtypes.html#bytes] paths. (For the record, the
pathlib [https://docs.python.org/3/library/pathlib.html#module-pathlib] classes count as str [https://docs.python.org/3/library/stdtypes.html#str] paths.)

API

Functions

	
gitmatch.compile(patterns: Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable], ignorecase: bool [https://docs.python.org/3/library/functions.html#bool] = False) → Gitignore

	Compile a collection of gitignore patterns into a Gitignore instance.
Any invalid or empty patterns are discarded.

Trailing newlines are stripped from the patterns before compiling, so you
can compile a pre-existing .gitignore file by simply doing:

with open("path/to/.gitignore") as fp:
 gi = gitmatch.compile(fp)

	Parameters

	
	patterns – an iterable of gitignore patterns

	ignorecase (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the patterns should match case-insensitively

	
gitmatch.pattern2regex(pattern: AnyStr, ignorecase: bool [https://docs.python.org/3/library/functions.html#bool] = False) → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Regex]

	Convert a gitignore pattern to a regular expression and return a Regex
object. If the pattern is empty or a comment, returns None [https://docs.python.org/3/library/constants.html#None].

	Parameters

	
	pattern – a gitignore pattern

	ignorecase (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the pattern should match case-insensitively

	Raises

	InvalidPatternError – If the given pattern is invalid

Classes

Note

Although the Sphinx docs don’t show it, all of the gitmatch classes are
generic in typing.AnyStr [https://docs.python.org/3/library/typing.html#typing.AnyStr]; i.e., they should be written in type
annotations as Gitignore[AnyStr], Gitignore[str], or
Gitignore[bytes], as appropriate.

	
class gitmatch.Gitignore

	A collection of compiled gitignore patterns

	
match(path: Union [https://docs.python.org/3/library/typing.html#typing.Union][AnyStr, PathLike [https://docs.python.org/3/library/os.html#os.PathLike]], is_dir: bool [https://docs.python.org/3/library/functions.html#bool] = False) → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Match]

	Test whether the given relative path matches the collection of
patterns. If is_dir is true or if path ends in a slash,
path is treated as a path to a directory; otherwise, it treated as
a path to a file.

If on Windows and path is not an instance of
pathlib.PurePosixPath [https://docs.python.org/3/library/pathlib.html#pathlib.PurePosixPath], or if on any OS and path is an instance of
pathlib.PureWindowsPath [https://docs.python.org/3/library/pathlib.html#pathlib.PureWindowsPath], any backslashes in path will be
converted to forward slashes before matching.

If a match is found, a Match object is returned containing
information about the matching pattern and the path or portion thereof
that matched. The Match object may be either “truthy” or “falsy”
depending on whether the matching pattern is negative or not. If none
of the patterns match the path, match() returns None [https://docs.python.org/3/library/constants.html#None]. Hence, if
you’re just interested in whether the patterns say the path should be
gitignored, call bool() on the result or use it in a boolean context
like an if ... : line.

	Raises

	InvalidPathError – If path is empty, is absolute, is not normalized (aside from an
optional trailing slash), contains a NUL character, or starts with
...

	
class gitmatch.Pattern

	A compiled gitignore pattern

	
dir_only: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether the pattern only matches directories

	
ignorecase: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether the pattern is case-insensitive

	
match(path: AnyStr, is_dir: bool [https://docs.python.org/3/library/functions.html#bool] = False) → bool [https://docs.python.org/3/library/functions.html#bool]

	Test whether the pattern matches the given path. path is assumed
to be a relative, normalized, /-separated path. If is_dir is
true, the path is assumed to refer to a directory; otherwise, it is
assumed to refer to a file.

Unlike Gitignore.match(), this method only tests path itself, not
any of its parent paths.

	
negative: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether the pattern is negative or not

	
pattern: AnyStr

	The original gitignore pattern provided to compile(), with trailing
spaces stripped

	
regex: Pattern

	A compiled regular expression pattern

	
class gitmatch.Regex

	A gitignore pattern that has been converted to a regular expression

	
compile() → Pattern

	Compile the regular expression

	
dir_only: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether the pattern only matches directories

	
ignorecase: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether the pattern is case-insensitive

	
negative: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether the pattern is negative or not

	
pattern: AnyStr

	The original gitignore pattern provided to compile(), with trailing
spaces stripped

	
regex: AnyStr

	The regular expression equivalent of the pattern

	
class gitmatch.Match

	Information about a successful match of a path against a pattern. A
Match is truthy if the pattern was not negative and falsy otherwise.

	
path: AnyStr

	The path that matched. This may be a parent path of the value passed to
match().

	
property pattern: AnyStr

	The original gitignore pattern provided to compile(), with trailing
spaces stripped

	
pattern_obj: Pattern

	The compiled Pattern object that matched the path

Exceptions

	
exception gitmatch.InvalidPathError

	Bases: ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]

Raised by Gitignore.match() when given an invalid path

	
msg

	A description of the problem with the path

	
path

	The invalid path

	
exception gitmatch.InvalidPatternError

	Bases: ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]

Raised by pattern2regex() when given an invalid pattern

	
pattern

	The invalid pattern

 Python Module Index

 g

 		 	

 		
 g	

 	
 	
 gitmatch	

Index

 C
 | D
 | G
 | I
 | M
 | N
 | P
 | R

C

 	
 	compile() (gitmatch.Regex method)

 	(in module gitmatch)

D

 	
 	dir_only (gitmatch.Pattern attribute)

 	(gitmatch.Regex attribute)

G

 	
 	Gitignore (class in gitmatch)

 	
 	
 gitmatch

 	module

I

 	
 	ignorecase (gitmatch.Pattern attribute)

 	(gitmatch.Regex attribute)

 	
 	InvalidPathError

 	InvalidPatternError

M

 	
 	Match (class in gitmatch)

 	match() (gitmatch.Gitignore method)

 	(gitmatch.Pattern method)

 	
 	
 module

 	gitmatch

 	msg (gitmatch.InvalidPathError attribute)

N

 	
 	negative (gitmatch.Pattern attribute)

 	(gitmatch.Regex attribute)

P

 	
 	path (gitmatch.InvalidPathError attribute)

 	(gitmatch.Match attribute)

 	Pattern (class in gitmatch)

 	pattern (gitmatch.InvalidPatternError attribute)

 	(gitmatch.Match property)

 	(gitmatch.Pattern attribute)

 	(gitmatch.Regex attribute)

 	
 	pattern2regex() (in module gitmatch)

 	pattern_obj (gitmatch.Match attribute)

R

 	
 	Regex (class in gitmatch)

 	
 	regex (gitmatch.Pattern attribute)

 	(gitmatch.Regex attribute)

 nav.xhtml

 Table of Contents

 		
 gitmatch — Gitignore-style path matching

_static/plus.png

_static/file.png

_static/minus.png

